Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Vernillo, Gianluca (Ed.)A previously developed joint-space metabolic energy expenditure (MEE) model includes subject-specific parameters and was validated using level walking gait data. In this work, we determine how well this joint-space model performs during various walking grades (-8%, 0%, and 8%) at 0.8 m·s ⁻ 1 and 1.3 m·s ⁻ 1 using published gait data in the literature. In response to those results, we formulate an optimization problem and solve it through the particle swam method plus fmincon function in MATLAB to identify a new optimal weighting parameter set for each grade that produces more accurate predicted MEE and we compare our new findings with seven other MEE models in the literature. The current study matched the measured MEE the best with the lowest RMSE values for level (0.45 J·kg ⁻ 1 ·m ⁻ 1 ) and downhill (0.82 J·kg ⁻ 1 ·m ⁻ 1 ) walking and the third lowest RMSE value for uphill (1.56 J·kg ⁻ 1 ·m ⁻ 1 ) walking, where another MEE model, Looney et al., had the lowest RMSE for uphill (1.27 J·kg ⁻ 1 ·m ⁻ 1 ) walking. Bland-Altman plots and three independent-samples t-tests show that there was no statistical significant difference between experimentally measured MEE and estimated MEE during the three walking conditions, meaning that the three new optimal weighting parameter sets can be used with 6 degree of freedom (DOF) lower extremity motion data to better estimate whole body MEE in those scenarios. We believe that this work is a step towards identifying a single robust parameter set that allows for accurate estimation of MEE during any task, with the potential to mitigate a limitation of indirect calorimetry requiring lengthy steady state motion.more » « less
-
null (Ed.)Abstract Symmetric lifting is a common manual material handling strategy in daily life and is the main cause of low back pain. In the literature, symmetric lifting is mainly simulated by using two-dimensional (2D) models because of their simplicity and low computational cost. In practice, however, symmetric lifting can generate asymmetric kinetics especially when the lifting weight is heavy and symmetric lifting based on 2D models misses this important asymmetric kinetics information. Therefore, three-dimensional (3D) models are necessary for symmetric lifting simulation to capture asymmetric kinetics. The purpose of this single-subject case study is to compare the optimization formulations and simulation results for symmetric lifting by using 2D and 3D human models and to identify their pros and cons. In this case study, a 10-degrees-of-freedom (DOFs) 2D skeletal model and a 40-DOFs 3D skeletal model are employed to predict the symmetric maximum weight lifting motion, respectively. The lifting problem is formulated as a multi-objective optimization (MOO) problem to minimize the dynamic effort and maximize the box weight. An inverse dynamic optimization approach is used to determine the optimal lifting motion and the maximum lifting weight considering dynamic joint strength. Lab experiments are carried out to validate the predicted motions. The predicted lifting motion, ground reaction forces (GRFs), and maximum box weight from the 2D and 3D human models for Subject #8 are compared with the experimental data. Recommendations are given.more » « less
-
null (Ed.)In this study, the three-dimensional (3D) asymmetric maximum weight lifting is predicted using an inverse-dynamics-based optimization method considering dynamic joint torque limits. The dynamic joint torque limits are functions of joint angles and angular velocities, and imposed on the hip, knee, ankle, wrist, elbow, shoulder, and lumbar spine joints. The 3D model has 40 degrees of freedom (DOFs) including 34 physical revolute joints and 6 global joints. A multi-objective optimization (MOO) problem is solved by simultaneously maximizing box weight and minimizing the sum of joint torque squares. A total of 12 male subjects were recruited to conduct maximum weight box lifting using squat-lifting strategy. Finally, the predicted lifting motion, ground reaction forces, and maximum lifting weight are validated with the experimental data. The prediction results agree well with the experimental data and the model’s predictive capability is demonstrated. This is the first study that uses MOO to predict maximum lifting weight and 3D asymmetric lifting motion while considering dynamic joint torque limits. The proposed method has the potential to prevent individuals’ risk of injury for lifting.more » « less
-
null (Ed.)Abstract Lifting heavy weight is one of the main reasons for manual material handling related injuries which can be mitigated by determining the limiting lifting weight of a person. In this study, a 40 degrees of freedom (DOFs) spatial skeletal model was employed to predict the symmetric maximum weight lifting motion. The lifting problem was formulated as a multi-objective optimization (MOO) problem to minimize the dynamic effort and maximize the box weight. An inverse-dynamics-based optimization approach was used to determine the optimal lifting motion and the maximum lifting weight considering dynamic joint strength. The predicted lifting motion, ground reaction forces (GRFs), and maximum box weight were shown to match well with the experimental results. It was found that for the three-dimensional (3D) symmetric lifting the left and right GRFs were not same.more » « less
An official website of the United States government
